Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 120: 155041, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678054

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS: The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS: Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS: Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.


Subject(s)
Psoriasis , Animals , Humans , Psoriasis/drug therapy , Autophagy , Skin , China , Databases, Factual
2.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37306932

ABSTRACT

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Subject(s)
Hydrolyzable Tannins , Psoriasis , Humans , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , Interleukin-17/metabolism , Interleukin-17/pharmacology , Interleukin-17/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Keratinocytes , Psoriasis/drug therapy , Psoriasis/pathology , Cell Proliferation
3.
Cell Prolif ; 56(10): e13450, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36938980

ABSTRACT

The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Immunization, Passive/methods , Patients , Hospitalization
4.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36592823

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Subject(s)
Drugs, Chinese Herbal , Fatty Liver , Insulin Resistance , Metabolic Syndrome , Mitophagy , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Cholesterol, LDL , Metabolic Syndrome/drug therapy , Mitophagy/drug effects , Molecular Docking Simulation , Oleic Acid/pharmacology , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism , Triglycerides , Ubiquitin-Protein Ligases/metabolism , Drugs, Chinese Herbal/pharmacology
5.
Front Pharmacol ; 13: 817526, 2022.
Article in English | MEDLINE | ID: mdl-35153790

ABSTRACT

Psoriasis is a chronic and inflammatory skin disorder characterized by inflammation and epidermal hyperplasia. Punicalagin (PUN) is a main active ingredient of pomegranate (Punica granatum L.) peel with multiple biological activities, such as antibacterial, antioxidant and anti-tumor effects. However, the potential effect of PUN on psoriasis remains unknown. In this study, we want to investigate the pharmacological effect of PUN on psoriasis by using imiquimod (IMQ)-induced psoriatic mice model in vivo and tumor necrosis factor a (TNF-α) and interleukin-17A (IL-17A)-stimulated HaCaT cells in vitro. Our results showed that PUN can effectively alleviate the severity of psoriasis-like symptoms. Mechanistically, PUN potently suppresses the aberrant upregulation of interleukin-1ß (IL-1ß) and subsequent IL-1ß-mediated inflammatory cascade in keratinocytes by inhibiting the nuclear factor kappa B (NF-κB) activation and cleaved caspase-1 expression in vitro and in vivo. Taken together, our findings indicate that PUN can relieve psoriasis by repressing NF-κB-mediated IL-1ß transcription and caspase-1-regulated IL-1ß secretion, which provide evidence that PUN might represent a novel and promising candidate for the treatment of psoriasis.

6.
Front Cell Dev Biol ; 9: 686820, 2021.
Article in English | MEDLINE | ID: mdl-34414181

ABSTRACT

Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid ß-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.

7.
Front Pharmacol ; 12: 670151, 2021.
Article in English | MEDLINE | ID: mdl-34122092

ABSTRACT

Background: Metabolic syndrome is characterized by central obesity, hyperglycemia and hyperlipidemia. Insulin resistance is the leading risk factor for metabolic syndrome. Kun-Dan decoction (KD), a traditional Chinese medicine, has been applied to treat patients with metabolic syndrome for over ten years. It is increasingly recognized that autophagy deficiency is the key cause of metabolic syndrome. Therefore, we aimed to explore whether KD can activate autophagy to improve metabolic syndrome. Methods: Network pharmacology was used to explore the underlying mechanism of KD in the treatment of metabolic syndrome. The high-fat diet-fed rats and oleic acid-induced LO2 cells were employed in our study. Oral glucose tolerance test and insulin tolerance test, obesity and histological examination, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity in high-fat diet-fed rats were analyzed. Furthermore, the protein expressions of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), phospho-AMPK, mammalian target of rapamycin (mTOR), phospho-mTOR, p62, autophagy related protein (Atg) 5, Atg7, Atg12, Atg13, Atg16L1 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-Ⅱ/Ⅰ were examined in rats and LO2 cells. Moreover, autophagy activator rapamycin and inhibitor 3-methyladenine, and small interfering RNA against Atg7 were utilized to verify the role of autophagy in the treatment of metabolic syndrome by KD in oleic acid-induced LO2 cells. Results: Results from network pharmacology indicated that targeted insulin resistance might be the critical mechanism of KD in the treatment of metabolic syndrome. We found that KD significantly suppressed obesity, serum cholesterol, triglyceride and LDL-C levels and increased serum HDL-C level in high-fat diet-fed rats. Furthermore, KD enhanced insulin sensitivity and attenuated HOMA-IR in high-fat diet-fed rats. Western blot showed that KD could enhance autophagy to increase the insulin sensitivity of high-fat diet-fed rats and oleic acid-induced LO2 cells. Furthermore, 3-methyladenine and small interfering RNA against Atg7 could reverse the protective effect of KD on LO2 cells. However, rapamycin could cooperate with KD to enhance autophagic activation to increase insulin sensitivity in LO2 cells. Conclusion: The induction of autophagy may be the major mechanism for KD to improve insulin resistance and metabolic syndrome.

8.
Front Immunol ; 12: 769011, 2021.
Article in English | MEDLINE | ID: mdl-35069542

ABSTRACT

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antiviral Agents/metabolism , Asthma/epidemiology , Asthma/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Immunologic Factors/metabolism , Luteolin/metabolism , SARS-CoV-2/metabolism , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Comorbidity , Computational Biology/methods , Drug Discovery/methods , Humans , Immunologic Factors/chemistry , Interleukin-6/metabolism , Luteolin/chemistry , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Serum Albumin, Human/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
Front Pharmacol ; 10: 1193, 2019.
Article in English | MEDLINE | ID: mdl-31649547

ABSTRACT

Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid ß-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid-induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.

10.
Int J Biol Macromol ; 137: 32-44, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31252022

ABSTRACT

Invasion and metastasis of cancerous cells affects the treatment and prognosis of hepatocellular carcinoma (HCC). HIF-1α-induced epithelial-mesenchymal transition (EMT) is a critical process associated with cancer metastasis. Basil polysaccharide (BPS), one of the major active ingredients isolated from Basil (Ocimum basilicum L.), has been identified to possess an antitumor activity for HCC. In our current study, BPS was obtained by water extraction and ethanol precipitation method and the characterization was analyzed through ultraviolet absorption spectra and Fourier-transform infrared spectrum. A CoCl2-induced hypoxia model and a HCC cell line-derived xenograft (CDX) model were used to explore the anti-metastasis efficacy and the mechanism that underlies the antitumor activity of BPS. The results showed that hypoxia could facilitate EMT and promote HCC cells migration and/or invasion. Conversely, BPS inhibited the progression and metastasis of tumor, as well as reversed EMT by causing cytoskeletal remodeling under hypoxic conditions. Moreover, BPS alleviated tumor hypoxia by targeting HIF1α, and the mesenchymal markers (ß-catenin, N-cadherin and vimentin) were down-regulated, while the epithelial markers (E-cadherin, VMP1 and ZO-1) were up-regulated after BPS treatment under hypoxic conditions. Thus, these results suggested that BPS may be a valuable option for use in clinical treatment of HCC and other malignant tumors.


Subject(s)
Carcinoma, Hepatocellular/pathology , Disease Progression , Epithelial-Mesenchymal Transition/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/pathology , Ocimum basilicum/chemistry , Polysaccharides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cadherins/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Membrane Proteins/metabolism , Mice , Neoplasm Metastasis , Vimentin/metabolism , Xenograft Model Antitumor Assays , Zonula Occludens-1 Protein/metabolism , beta Catenin/metabolism
11.
Biomed Pharmacother ; 112: 108647, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30797149

ABSTRACT

Cisplatin remains the standard first-line chemotherapeutic agent in the treatment of many types of cancers, but its clinical application is hindered by its severe nephrotoxicity. Previous studies reported that scutellarin enhanced the anti-cancer activity of cisplatin in lung cancer cells, with no confirmation on cisplatin-induced renal damage. Here, we investigated the nephroprotective effect of scutellarin on cisplatin-induced renal injury and its underlying mechanisms. Renal function, histological change, inflammation, apoptosis, autophagy and involved pathways were investigated. Pretreatment with scutellarin prevented cisplatin-induced decline of renal function including BUN, CRE, and histological damage. Scutellarin also reduced renal inflammation by suppressing the levels of pro-inflammatory cytokine, TNF-α and IL-6. Similarly, scutellarin administration inhibited apoptosis triggered by cisplatin through reducing the expressions of Cleaved caspase-3, Cleaved PARP, p53, and the ratio of Bax/Bcl-2. Moreover, scutellarin prevented cisplatin-induced inhibition of autophagy via enhancing LC3-II/LC3-I and Atg7, and inhibition of p62. Of note, the activations of JNK, ERK, p38 and stat3 induced by cisplatin were strikingly attenuated in scutellarin-treated mice. Thus, these results provide compelling evidence that scutellarin is a novel nephroprotectant against cisplatin-induced renal toxicity.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Apigenin/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Cisplatin/toxicity , Glucuronates/therapeutic use , Acute Kidney Injury/pathology , Animals , Apigenin/pharmacology , Apoptosis/physiology , Autophagy/physiology , Glucuronates/pharmacology , Inflammation/chemically induced , Inflammation/pathology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/therapeutic use , Random Allocation
12.
J Cell Physiol ; 234(4): 3661-3674, 2019 04.
Article in English | MEDLINE | ID: mdl-30607907

ABSTRACT

Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. However, the pathogenesis of psoriasis is multifactorial and is not fully understood. MicroRNAs (miRNAs) represent a promising class of small, noncoding RNA molecules that have a large impact on cellular functions by regulating gene expression. Here we reported that microRNA-187 (miR-187), which is one of the most dynamic microRNAs identified in the deep screening miRNAs profile, is downregulated in inflammatory cytokines-stimulated keratinocytes and psoriatic skins. By luciferase activity assay and gain-of-function studies, we showed that miR-187 inhibits keratinocytes hyperproliferation by targeting CD276. Moreover, overexpression of miR-187 decreases acanthosis and reduces the disease severity in psoriasis mouse models. Taken together, the results of our study implies miR-187 as a critical factor in psoriasis pathogenesis, which could be a potent target for psoriasis treatment.


Subject(s)
Cell Proliferation , Keratinocytes/metabolism , MicroRNAs/metabolism , Psoriasis/metabolism , Skin/metabolism , Animals , B7 Antigens/genetics , B7 Antigens/metabolism , Case-Control Studies , Cell Line , Cell Proliferation/drug effects , Cytokines/pharmacology , Disease Models, Animal , Down-Regulation , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/prevention & control , Skin/drug effects , Skin/pathology
13.
J Cancer ; 9(18): 3247-3256, 2018.
Article in English | MEDLINE | ID: mdl-30271483

ABSTRACT

Curative molecular therapy for non-small cell lung cancer (NSCLC) is still lacking. Scutellarin, an active flavone extracted from Erigeron breviscapus Hand-Mazz, displays anti-tumor property in diverse cancer types, yet its tumor-suppressive effect on NSCLC is not reported. In this study, we found that scutellarin significantly inhibited the proliferation of NSCLC cells, induced cell apoptosis, and triggered autophagy. Notably, inhibition of autophagy with inhibitor HCQ attenuated the anti-proliferative activity of scutellarin, indicating that scutellarin-induced autophagy is antineoplastic. In addition, HCQ treatment reduced scutellarin-induced apoptosis. Further study demonstrated that scutellarin stimulated phosphorylation of ERK1/2, and inhibition of ERK1/2 with inhibitor U0126 markedly attenuated scutellarin-induced autophagy. Similarly, scutellarin downregulated the expression of p-AKT, and AKT inhibitor MK-2206 induced autophagy. Moreover, there also existed crosstalk between ERK and AKT pathways. Finally, in vivo xenograft nude mice experiment proved that scutellarin treatment significantly reduced tumor growth and increased the levels of LC3-II and p-ERK1/2, suppressed p-AKT in mice tumors. Thus, our study for the first time uncovered the anti-cancer function of scutellarin on NSCLC cells, and might provide a potential novel therapy for treatment of patients with NSCLC.

14.
Front Pharmacol ; 9: 92, 2018.
Article in English | MEDLINE | ID: mdl-29487530

ABSTRACT

Cisplatin, as the first-line anti-tumor agent, is widely used for treatment of a variety of malignancies including non-small cell lung cancer (NSCLC). However, the acquired resistance has been a major obstacle for the clinical application. Scutellarin is a active flavone extracted from Erigeron breviscapus Hand-Mazz that has been shown to exhibit anticancer activities on various types of tumors. Here, we reported that scutellarin was capable of sensitizing A549/DDP cells to cisplatin by enhancing apoptosis and autophagy. Mechanistic analyses indicated that cisplatin-induced caspase-3-dependent apoptosis was elevated in the presence of scutellarin through activating extracellular signal-regulated kinases (ERK)-mediated p53 pathway. Furthermore, scutellarin also promoted cisplatin-induced cytotoxic autophagy, downregulated expression of p-AKT and c-met. Deficiency of c-met reduced p-AKT level, and inhibition of p-AKT or c-met improved autophagy in A549/DDP cells. Interestingly, loss of autophagy attenuated the synergism of this combination. In vivo, the co-treatment of cisplatin and scutellarin notably reduced the tumor size when compared with cisplatin treatment alone. Notably, scutellarin significantly reduced the toxicity generated by cisplatin in tumor-bearing mice. This study identifies the unique role of scutellarin in reversing cisplatin resistance through apoptosis and autophagy, and suggests that combined cisplatin and scutellarin might be a novel therapeutic strategy for patients with NSCLC.

15.
Phytomedicine ; 40: 20-26, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29496171

ABSTRACT

OBJECTIVE: To explore the preventive and therapeutic effects of Resveratrol combined with total flavones of hawthorn, compatibility of traditional Chinese medicines, on the endothelial cells injury after artery bypass graft surgery. METHODS: The animal model of coronary artery bypass grafting (CABG) was prepared by transplanting a segment of autologous jugular vein onto the transected common carotid artery in rabbits. After CABG surgery, the rabbits were administrated with saline (model group), aspirin (Aspirin group), resveratrol (Res group), total flavones of hawthorn (Haw group) and resveratrol combined with total flavones of hawthorn (Res+Haw group) once a day for eight weeks, respectively. Eight weeks later, the grafting arteries from all group were obtained for the pathomorphism observation, peripheral blood was collected to detect circulating endothelial cells (CECs) by flow cytometry. And the concentration of albumen and mRNA of ICAM-1 in the serum were measured by western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS: Compared with the model group, the level of CECs density and the expressions of albumen and mRNA of ICAM-1 were significantly decreased in the aspirin,resveratrol,total flavones of hawthorn and resveratrol combined with total flavones of hawthorn groups (P < .05). Of note, above all parameters were lower in Res group than aspirin group. CONCLUSION: The Resveratrol combined with total flavones of hawthorn could protect the endothelial cells after coronary artery bypass graft.


Subject(s)
Coronary Artery Bypass/adverse effects , Crataegus/chemistry , Endothelium, Vascular/pathology , Flavones/pharmacology , Stilbenes/pharmacology , Animals , Aspirin/pharmacology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/surgery , Intercellular Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/genetics , Rabbits , Resveratrol
16.
Exp Dermatol ; 27(3): 268-275, 2018 03.
Article in English | MEDLINE | ID: mdl-29427477

ABSTRACT

The discovery of new therapeutic drugs with the efficacious and safe ability to prevent epidermal hyperplasia is extremely urgent for psoriasis. Cryptotanshinone (CTS), an active component isolated from the root of Salvia miltiorrhiza Bunge, has been reported to have antibacterial and antitumor effects. However, its effects on psoriasis have not been reported. Here, we investigated the therapeutic effects of CTS on imiquimod (IMQ)-induced psoriatic-like skin model and explored the underlying mechanisms. Our results revealed that CTS effectively alleviates IMQ-induced epidermal hyperplasia. In vitro studies also indicated that CTS potently inhibits the growth of keratinocytes. We further found that STAT3, a transcription factor for the cell growth, is the key mediator of CTS on the proliferation of keratinocytes. Taken together, our findings indicated that the curative effects of CTS on psoriasis are accomplished mainly through modulating STAT3, which providing evidences to develop CTS as a potential therapeutic agent for patients with psoriasis.


Subject(s)
Cell Proliferation/drug effects , Epidermis/pathology , Phenanthrenes/therapeutic use , Psoriasis/drug therapy , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Cell Line , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Hyperplasia/chemically induced , Hyperplasia/drug therapy , Hyperplasia/pathology , Imiquimod , Keratinocytes , Male , Mice, Inbred C57BL , Phenanthrenes/pharmacology , Psoriasis/chemically induced , Psoriasis/pathology
17.
RSC Adv ; 8(34): 18926-18937, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539637

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-ß (Aß) and neuroinflammation which promote the development of AD. Geniposide, the main ingredient isolated from Chinese herbal medicine Gardenia jasminoides Ellis, has a variety of pharmacological functions such as anti-apoptosis and anti-inflammatory activity. Hence, we estimated the inflammatory cytotoxicity caused by Aß25-35 and the neuroprotective effects of geniposide in HT22 cells. In this research, following incubation with Aß25-35 (40 µM, 24 h) in HT22 cells, the methylthiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) release assays showed that the cell survival rate was significantly decreased. In contrast, the reactive oxygen species (ROS) assay indicated that Aß25-35 enhanced ROS accumulation and apoptosis showed in both hoechst 33342 staining and annexin V-FITC/PI double staining. And then, immunofluorescence test revealed that Aß25-35 promoted p65 to transfer into the nucleus indicating p65 was activated by Aß25-35. Moreover, western blot analysis proved that Aß25-35 increased the expression of nitric oxide species (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-1ß (IL-1ß). Simultaneously, Aß25-35 also promoted the expression of toll-like receptor 4 (TLR4), p-p65 and p-IκB-α accompanied with the increase in the level of beta-secretase 1 (BACE1) and caspase-3 which further supported Aß25-35 induced apoptosis and inflammation. Fortunately, this up-regulation was reversed by geniposide. In conclusion, our data suggest that geniposide can alleviate Aß25-35-induced inflammatory response to protect neurons, which is possibly involved with the inhibition of the TLR4/NF-κB pathway in HT22 cells. Geniposide may be the latent treatment for AD induced by neuroinflammation and apoptosis.

18.
Int J Biol Macromol ; 107(Pt B): 2171-2179, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29042275

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common and fatal cancers in the world. Tumor metastasis is an important factor of poor prognosis in patients with HCC. Tumor hypoxia can promote tumor cell metastasis in HCC. Epigenetic modification is closely related to tumor hypoxia and metastasis. In our previous research, we found that basil polysaccharide suppressed migration and invasion of HCC cell by inhibiting hypoxia induced histone methylation in vitro. In the present study, we investigated the effect of basil polysaccharide on the walker 256 carcinoma cell metastasis in rat. We established an intratumoral hypoxic model in rat by hepatic artery ligation (HAL). Then rats were treated with basil polysaccharide (75, 150 and 300mg/kg). The results showed that HAL could promote tumor metastasis by aggravating tumor hypoxia. However, basil polysaccharide could inhibit tumor metastasis in intratumoral hypoxia. Further, we demonstrated that basil polysaccharide could down-regulate the expression of HIF-1α, G9a, LSD1, JMJD1A, JMJD2B, JARID1B and H3K9me2. Synchronously, basil polysaccharide could increase E-cadherin and VMP1 expression, and decrease N-cadherin, vimentin and ß-catenin expression. The results indicated that histone modifying enzymes might be a new therapeutic target of basil polysaccharide on hepatocellular carcinoma metastasis.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Hepatic Artery/pathology , Histones/metabolism , Liver Neoplasms/drug therapy , Ocimum basilicum/chemistry , Polysaccharides/therapeutic use , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Ligation , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Methylation , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Polysaccharides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar
19.
Article in English | MEDLINE | ID: mdl-28424738

ABSTRACT

Li-Fei-Xiao-Yan prescription (LFXY) has been clinically used in China to treat inflammatory and infectious diseases including inflammatory lung diseases. The present study was aimed at evaluating the potential therapeutic effects and potential mechanisms of LFXY in a murine model of lipopolysaccharide- (LPS-) induced acute lung injury (ALI). In this study, the mice were orally pretreated with LFXY or dexamethasone (positive drug) before the intratracheal instillation of LPS. Our data indicated that pretreatment with LFXY enhanced the survival rate of ALI mice, reversed pulmonary edema and permeability, improved LPS-induced lung histopathology impairment, suppressed the excessive inflammatory responses via decreasing the expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and chemokine (MIP-2) and inhibiting inflammatory cells migration, and repressed oxidative stress through the inhibition of MPO and MDA contents and the upregulation of antioxidants (SOD and GSH) activities. Mechanistically, treatment with LFXY significantly prevented LPS-induced TLR4 expression and NF-κB (p65) phosphorylation. Overall, the present study suggests that LFXY protected mice from acute lung injury induced by LPS via inhibition of TLR4/NF-κB p65 activation and upregulation of antioxidative enzymes and it may be a potential preventive and therapeutic agent for ALI in the clinical setting.

20.
Int Immunopharmacol ; 46: 146-155, 2017 May.
Article in English | MEDLINE | ID: mdl-28284148

ABSTRACT

Usnic acid (UA) can be found in certain lichen species. Growing evidence suggests that UA possesses antitumoral, antioxidative and anti-inflammatory activities. Bleomycin (BLM) is widely used in the treatment of malignant ascites, however, it unexpectedly causes pulmonary fibrosis (PF). Researches show that excessive inflammatory response and oxidative stress in lung tissue is conspicuous causes of BLM-induced PF. Here we investigated mechanism underlying the effect-enhancing and toxicity-reducing activity of UA on H22-bearing mice treated with BLM. UA combined with BLM was significantly more effective than BLM alone in inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, and promoting the cleaved caspase-3 and cleaved caspase-8 activities to induce cancer cellular apoptosis. The mechanism may be associated with the transcriptional regulation of p53/p21/Cyclin pathway. Furthermore, UA effectively moderated the histopathological changes, reduced the content of MDA, HYP, TNF-α, IL-1ß, IL-6 and TGF-ß1, and increased the level of SOD when combined with BLM in lung tissues of H22-bearing mice, which was believed to be related to the inhibition on the protein level of p-Smad2/3 and enhancement of Smad7 expression. These findings suggested that UA might be a potential effect-enhancing and toxicity-reducing candidate for BLM in the treatment of malignant ascites.


Subject(s)
Antineoplastic Agents/therapeutic use , Ascites/drug therapy , Benzofurans/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Drug-Related Side Effects and Adverse Reactions/prevention & control , Liver Neoplasms/drug therapy , Pulmonary Fibrosis/prevention & control , Adjuvants, Pharmaceutic , Animals , Apoptosis/drug effects , Ascites/complications , Bleomycin/adverse effects , Bleomycin/therapeutic use , Carcinoma, Hepatocellular/complications , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Humans , Lichens/immunology , Liver Neoplasms/complications , Male , Mice , Mice, Inbred Strains , Neoplasms, Experimental , Pulmonary Fibrosis/etiology , Smad Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...